Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Carman, George M (Ed.)Coenzyme Q (CoQ) is a redox-active lipid molecule that acts as an electron carrier in the mitochondrial electron transport chain. In Saccharomyces cerevisiae, CoQ is synthesized in the mitochondrial matrix by a multi-subunit protein-lipid complex termed the CoQ synthome, the spatial positioning of which is coordinated by the Endoplasmic Reticulum-Mitochondria Encounter Structure (ERMES). The MDM12 gene encoding the cytosolic subunit of ERMES, is co-expressed with COQ-10, which encodes the putative CoQ chaperone Coq10, via a shared bidirectional promoter. Deletion of COQ10 results in respiratory deficiency, impaired CoQ biosynthesis, and reduced spatial coordination between ERMES and the CoQ Synthome. While Coq10 protein content is maintained upon deletion of MDM12, we show that deletion of COQ10 by replacement with a HIS3 marker results in diminished Mdm12 protein content. Since deletion of individual ERMES subunits prevents ERMES formation, we asked whether some or all of the phenotypes associated with COQ10 deletion result from ERMES dysfunction. To identify the phenotypes resulting solely due to the loss of Coq10, we constructed strains expressing a functionally impaired (coq10-L96S) or truncated (coq10-R147*) Coq10 isoform using CRISPR-Cas9. We show that both coq10 mutants preserve Mdm12 protein content and exhibit impaired respiratory capacity like the coq10Δ mutant, indicating that Coq10’s function is vital for respiration regardless of ERMES integrity. Moreover, the maintenance of CoQ synthome stability and efficient CoQ biosynthesis observed for the coq10-R147* mutant suggests these deleterious phenotypes in the coq10Δ mutant result from ERMES disruption. Overall, this study clarifies the role of Coq10 in modulating CoQ biosynthesis.more » « less
-
Inflammation and oxidative stress in pancreatic islets amplify the appearance of various posttranslational modifications to self-proteins. In this study, we identified a select group of carbonylated islet proteins arising before the onset of hyperglycemia in NOD mice. Of interest, we identified carbonyl modification of the prolyl-4-hydroxylase β subunit (P4Hb) that is responsible for proinsulin folding and trafficking as an autoantigen in both human and murine type 1 diabetes. We found that carbonylated P4Hb is amplified in stressed islets coincident with decreased glucose-stimulated insulin secretion and altered proinsulin-to-insulin ratios. Autoantibodies against P4Hb were detected in prediabetic NOD mice and in early human type 1 diabetes prior to the onset of anti-insulin autoimmunity. Moreover, we identify autoreactive CD4+ T-cell responses toward carbonyl-P4Hb epitopes in the circulation of patients with type 1 diabetes. Our studies provide mechanistic insight into the pathways of proinsulin metabolism and in creating autoantigenic forms of insulin in type 1 diabetes.more » « less
-
null (Ed.)Coenzyme Q (CoQ) is an essential component of the mitochondrial electron transport chain and an important antioxidant present in all cellular membranes. CoQ deficiencies are frequent in aging and in age-related diseases, and current treatments are limited to CoQ supplementation. Strategies that rely on CoQ supplementation suffer from poor uptake and trafficking of this very hydrophobic molecule. In a previous study, the dietary flavonol kaempferol was reported to serve as a CoQ ring precursor and to increase the CoQ content in kidney cells, but neither the part of the molecule entering CoQ biosynthesis nor the mechanism were described. In this study, kaempferol labeled specifically in the B-ring was isolated from Arabidopsis plants. Kidney cells treated with this compound incorporated the B-ring of kaempferol into newly synthesized CoQ, suggesting that the B-ring is metabolized via a mechanism described in plant cells. Kaempferol is a natural flavonoid present in fruits and vegetables and possesses antioxidant, anticancer, and anti-inflammatory therapeutic properties. A better understanding of the role of kaempferol as a CoQ ring precursor makes this bioactive compound a potential candidate for the design of interventions aiming to increase endogenous CoQ biosynthesis and may improve CoQ deficient phenotypes in aging and disease.more » « less
An official website of the United States government
